ОЛИМПИАДА ШКОЛЬНИКОВ «ПОКОРИ ВОРОБЬЕВЫ ГОРЫ!» ПО ФИЗИКЕ. 2020/21 учебный год, ЗАДАНИЕ ЗАОЧНОГО ТУРА. 7,8 и 9 классы.

Часть I. Тестовое задание. Пример варианта.

Вопрос 1 (9 баллов):

Однородный куб массой 400 г покоится на горизонтальной поверхности. Коэффициент трения между кубиком и поверхностью равен 0,24. К середине одного из его верхних ребер прикладывают силу, линия действия которой лежит в одной вертикальной плоскости с центром куба (см. рисунок). При какой минимальной величине этой силы возможно, что куб начнет вращаться вокруг оси, проходящей через его нижнее ребро, причем эта ось не будет перемещаться? Ответ запишите в ньютонах, с точностью до сотых, без указания единиц измерения. Ускорение свободного падения считать равным 9,80 м/с².

OTBET: 1.48.

Комментарий: Пусть α — угол наклона линии действия силы \vec{F} к горизонтали. Тогда требование отсутствия скольжения куба означает, что сила трения $F_{mp} = F\cos(\alpha)$, а сила нормальной реакции поверхности $N = mg - F\sin(\alpha)$, и при этом $F_{mp} \leq \mu N$. Значит, $\frac{mg}{F} \geq \frac{\cos(\alpha) + \mu \sin(\alpha)}{\mu}$. С другой стороны, в момент начала отрыва куба от поверхности при повороте вокруг ребра, точка приложения силы нормальной реакции смещается на это ребро, и для переворота момент силы \vec{F} относительно ребра должен быть не меньше момента силы тяжести: $F \cdot a\sqrt{2}\cos\left(\alpha - \frac{\pi}{4}\right) \geq mg \cdot \frac{a}{2}$, и поэтому $\frac{mg}{F} \leq 2[\cos(\alpha) + \sin(\alpha)]$. Как видно, при каждом значении α величина $\frac{mg}{F}$ должна принадлежать заданному этими неравенствами интервалу значений, а минимальное возможное значение F соответствует максимальному значению $\frac{mg}{F}$, достигаемому для $\alpha > 45^\circ$ при совпадении границ интервалов, то есть при значении угла, определяемого из уравнения $2[\cos(\alpha) + \sin(\alpha)] = \frac{\cos(\alpha) + \mu \sin(\alpha)}{\mu}$. Значит, $tg(\alpha) = \frac{1-2\mu}{\mu}$ (отметим, что во всех вариантах было $\mu < \frac{1}{3}$, так что соответствующее $\alpha > 45^\circ$). Подставляя это значение угла в любое из «пограничных» выражений для силы, находим, что (при $\mu < \frac{1}{3}$) $F_{\min} = \frac{mg}{2\sqrt{1-4\mu}}$.

Вопрос 2 (8 баллов):

Межпланетная станция движется по эллиптической орбите вокруг Солнца. Афелий (самая далекая от Солнца точка ее орбиты) находится на расстоянии 4,2 а.е. от центра Солнца, и станция проходит его со скоростью 7,3 км/с. Перигелий (ближайшая к Солнцу точка ее орбиты) находится на расстоянии 0,6 а.е. от центра Солнца. С какой скоростью станция проходит перигелий? Ответ запишите в км/с, с точностью до десятых, без указания единиц измерения. 1

а.е. – единица измерения расстояний, используемая в астрономии и примерно равная среднему радиусу орбиты Земли.

OTBET: 51,1.

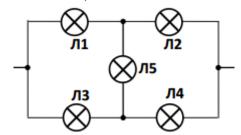
Комментарий: Афелий и перигелий — симметричные точки эллиптической орбиты небесного тела, движущегося вокруг Солнца, поэтому радиусы кривизны орбиты в этих точках одинаковы. Пусть этот одинаковый радиус равен R. Тогда уравнения для центростремительных компонент ускорения небесного тела массой m в этих точках имеют вид

$$mrac{v_{A,P}^2}{R}=rac{Gm_Sm}{r_{A,P}^2}$$
 (m_S — масса Солнца), откуда следует, что $v_P=rac{r_A}{r_P}v_A$.

Вопрос 3 (8 баллов):

Пять разных лампочек соединены по схеме, показанной на рисунке. Лампочки являются нелинейными элементами – для всех пяти сила тока через лампу примерно пропорциональна корню квадратному из приложенного напряжения (но с разными коэффициентами). Оказалось, что при подключении этой схемы к источнику постоянного напряжения четыре лампы (с номерами 1-4 на схеме) работают в номинальном режиме, а лампа 5 вовсе не горит и даже не греется. Номинальная мощность лампы 1 равна 4,5 Вт, лампы 2 – 4 Вт, лампы 3 – 7,2 Вт. Чему равна номинальная мощность лампы 4? Ответ запишите в ваттах, с точностью до десятых, без указания единиц.

OTBET: 6,4.



Комментарий: Ясно, что ток через Л5 не течет, поэтому $I_2=I_1$ и $I_4=I_3$. Кроме того, напряжение на Л5 равно нулю, поэтому $U_3=U_1$ и $U_4=U_2$. Лампа 4 работает в номинальном режиме, поэтому ее номинальная мощность $P_4=U_4I_4=U_2I_3=\frac{U_2I_2}{I_1}\frac{U_3I_3}{U_1}=\frac{P_2P_3}{P_1}$.

Часть II. ВОЗМОЖНЫЕ РЕШЕНИЯ И ОТВЕТЫ.

Внимание! В задании было указано, что необходимо предоставлять **решение** каждой задачи части ІІ. Поэтому в работах, в которых представлены **только ответы**, в случае их правильности, ставились **только** баллы, предусмотренные критериями за эти ответы.

1. («Речной круиз») Братья-близнецы Иван и Петр летом после 7 класса отправились в путешествие на теплоходе. Когда теплоход шел по каналу (как сказал братьям помощник капитана – с постоянной скоростью), они обратили внимание на старые кирпичные столбы, равномерно расставленные вдоль канала. Иван и Петр решили измерить расстояние между столбами. Для этого они придумали следующий способ. Мальчики расположились на площадке верхней палубы, и в тот момент, когда с ними поравнялся очередной столб, один из них пошел от «кормового» конца площадки к «носовому». Как только он дошел до «носового» конца, вслед за ним отправился второй, а первый тем временем бегом вернулся обратно, чтобы снова

пойти вслед за вторым. Таким образом, они, стараясь все время шагать в одном и том же ритме, успели совершить ровно 11 переходов до того, как с точкой старта поравнялся следующий столб. Затем они повторили процедуру, только теперь они ходили от «носового» конца площадки к «кормовому», шагая в том же ритме. Теперь они совершили ровно 13 переходов. Из вывешенного в коридоре плана братья узнали, что длина площадки верхней палубы равна 14,9 м. Чему равно расстояние между столбами?

Возможное решение:

Пусть v — скорость движения теплохода относительно берега, а u — скорость движения братьев относительно палубы во время переходов. По предположениям, сделанным в условии, эти скорости постоянны. Поэтому ясно, что время, потраченное братьями на N переходов, равно $t_N = N \frac{L}{u}$ (L — длина площадки верхней палубы), независимо от направления их движения. С другой стороны, точка «старта» («носовой» или «кормовой» конец площадки) перемещается относительно берега со скоростью v независимо от направления движения братьев. Таким образом, расстояние между столбами в обоих «экспериментах» братьев равно $D = N \frac{v}{u} L$. Поэтому разные количества переходов указывают на то, что расстояния между столбами на самом деле не являются постоянными (либо неверно предположение о постоянстве скоростей)! В любом случае ясно, что на основании данных этих двух «экспериментов» невозможно дать однозначный ответ на вопрос, интересовавший братьев.

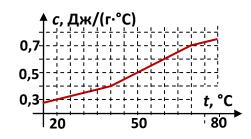
OTBET: однозначный ответ на поставленный вопрос дать невозможно, так как использованная братьями модель явления противоречит данным их измерений.

КРИТЕРИИ ПРОВЕРКИ:

действие	макс.балл
Показано, что время движения братьев не зависит от направления	2
Указано (используется в решении), что скорость движения точки старта относительно берега не зависит от движения братьев	2
Получено выражение для расстояния между столбами, эквивалентное $D = N \frac{v}{u} L$	
Сделан вывод о несовместимости предположений модели явления, использованной братьями (в любой форме)	3
Дан ответ о невозможности получить ответ на вопрос задачи (в любой форме)	1
ВСЕГО	10

2. («Переменная теплоемкость») В легком калориметре находится 500 г необычной жидкости,

удельная теплоемкость которой зависит от температуры. Эта зависимость представлена на графике. Температура жидкости равна 20° С. В калориметр опускают груз массой 275 г из материала с удельной теплоемкостью 3 Дж/(r·°С) с температурой 80° С. Найти температуру содержимого калориметра после установления равновесия. Теплоемкостью калориметра и теплообменом его



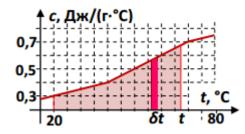
содержимого с окружающей средой можно пренебречь. С какой точностью получен результат?

Возможное решение:

Из условия теплового баланса ясно, что количество теплоты $Q_+ = c_z m_z (t_2 - t)$, отданное остывающим грузом (здесь c_z и m_z – удельная теплоемкость и масса груза, t_2 – его начальная

температура, t — искомая температура), должно равняться количеству теплоты Q_- , поглощенному нагревающейся жидкостью. Для нагревания жидкости при очень маленьком изменении ее температуры (на δt) требуется количество теплоты $\delta Q_- = c(t_{cp}) m_{\mathcal{H}} \delta t$, где

 t_{cp} — это средняя температура на участке δt . Нетрудно заметить, что для графика величина $c(t_{cp})\delta t$ равна площади трапеции между участком графика и участком оси температур δt . Поэтому Q_{-} можно вычислить (см. рисунок) как площадь под графиком удельной теплоемкости



на участке от начальной до конечной температуры жидкости, умноженную на массу жидкости. Как видно, для нагрева жидкости от $t_1 = 20^{\circ}\mathrm{C}$ до температуры $40^{\circ}\mathrm{C}$ потребуется количество теплоты $Q_1 = 500\Gamma \cdot \frac{0.3 + 0.4}{2} \frac{\mathrm{Дж}}{\Gamma \cdot {}^{\circ}\mathrm{C}} \cdot (40 - 20)^{\circ}\mathrm{C} = 3500\mathrm{Дж}$, что заметно меньше, чем выделится

при остывании груза до 40° С. Аналогично можно убедиться, что для нагревания жидкости до 70° С потребуется большее количество теплоты, чем выделит груз в этом случае. Поэтому искомая температура находится на участке от 40° С до 70° С. Пусть $t = 40^{\circ}$ С + τ . Уравнение прямой, описывающей поведение удельной теплоемкости на нужном участке можно записать в

виде $c(\tau) = 0.4 \frac{\text{Дж}}{\text{г} \cdot \text{°C}} + 0.01 \frac{\text{Дж}}{\text{г} \cdot (\text{°C})^2} \cdot \tau$. Уравнение теплового баланса для установления

равновесия имеет вид: $Q_1 + m_{_{\mathcal{H}\!C}} \cdot \frac{c(0) + c(\tau)}{2} \, \tau = m_{_{\mathcal{C}}} \cdot c_{_{\mathcal{C}}}(t_2 - t)$. После подстановки числовых

значений для величины $x \equiv \frac{\tau}{1^{\circ}\text{C}}$ получаем квадратное уравнение $x^2 + 410x - 11800 = 0$.

Положительный корень этого уравнения $x = \sqrt{53825} - 205 \approx 27,002$. Таким образом, $t \approx 67^{\circ}\mathrm{C}$. Сами вычисления являются точными (кроме последнего округления, вносящего ошибку менее 0,01%), поэтому неточность результата связана с использованием данных, извлеченных из графика. Изучение графика показывает, что ошибки в определении удельной теплоемкости в точках «излома» графика (а именно их мы использовали для составления уравнения) не превышают $5 \cdot 10^{-3}$ Дж/($\Gamma \cdot {}^{\circ}\mathrm{C}$), в то время как среднее значение теплоемкости жидкости на нужном нам интервале чуть меньше 0,5 Дж/($\Gamma \cdot {}^{\circ}\mathrm{C}$). Поэтому вносимую ошибку можно оценить в 1%. Ясно, что примерно такой же должна быть и ошибка в определении τ , и она примерно равна 0,3°C. Значит, $t = (67,0 \pm 0,3) {}^{\circ}\mathrm{C}$.

OTBET: $t = (67.0 \pm 0.3)^{\circ}$ C.

Примечание: Помимо вычисления количества теплоты через площадь, можно использовать и другие методы — например, аналогию между связью координаты и скорости при неравномерном движении по прямой $v(t) = \frac{\Delta x}{\Delta t} \bigg|_{\Delta t \to 0}$ и связью количества теплоты и переменной теплоемкостью $m \cdot c(t) = \frac{\Delta Q}{\Delta t} \bigg|_{\Delta t \to 0}$. Тогда по аналогии с формулой изменения координаты при равноускоренном

движении $v(t) = v(0) + at \Rightarrow x(t) - x(0) = v(0)t + \frac{a}{2}t^2$ можно записать формулу для количества теплоты при линейной зависимости теплоемкости от температуры: $c(\tau) = c(0) + k\tau \Rightarrow Q(\tau) = m \cdot \left(c(0)\tau + \frac{k}{2}\tau^2\right)$. Также допустимы другие способы оценки

погрешности (например, интервальный метод). Однако при этом оценка погрешности возрастет.

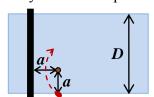
КРИТЕРИИ ПРОВЕРКИ:

действие	макс.балл	
Записано выражение, эквивалентное $Q_+ = c_z m_z (t_2 - t)$	2	
Предложен корректный метод вычисления количества теплоты, полученного		
жидкостью (при линейной зависимости теплоемкости от температуры)		
Установлено, что искомая температура находится на участке от 40°C до 70°C	3	
Записана (используется в решении) правильная аналитическая формула для	2*	
зависимости удельной теплоемкости от температуры на нужном участке		
Получено правильное уравнение для искомой температуры, не содержащее	3	
неизвестных величин		
Правильно найдена итоговая температура	4	
Правильно оценена точность результата (ошибка результата указана в интервале	2	
от 0,1°С до 1°С)		
ВСЕГО	20	

*если использовался, например, метод «стрельбы» для подбора нужной температуры (то есть считались Q_+ и Q_- – по площади – для разных t и сравнивались до совпадения с хорошей точностью) без явного использования формулы зависимости, то этот пункт засчитывается <u>при правильном результате</u>.

3. («На равных расстояниях») Через реку на ее почти прямолинейном участке шириной

 $D=170~\mathrm{M}$ сооружен мост, перпендикулярный реке. На расстоянии $a=50~\mathrm{M}$ и от берега, и от моста расположен почти неподвижный небольшой бакен. Катер стартует из точки напротив бакена с ближайшего к нему берега (см. рисунок) и движется таким образом, что он все время находится на равных расстояниях от моста и бакена.



Кроме того, проекция его скорости на направление, перпендикулярное течению, все время остается постоянной. Катер достигает другого берега за 34 с.

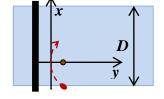
- 3.1. На каком расстоянии от моста катер причалит к другому берегу?
- 3.2. Чему равны максимальная и минимальная величина ускорения катера относительно берега за время движения?

Возможное решение:

Введем систему координат (x, y), показанную на рисунке, и запишем условие равенства

расстояний (начало координат совмещено с ближайшей к мосту точкой

траектории катера, и ясно, что эта точка находится на расстоянии $\frac{a}{2}$ и



от моста, и от бакена):
$$y + \frac{a}{2} = \sqrt{x^2 + \left(y - \frac{a}{2}\right)^2}$$
. Из этого условия

находим уравнение траектории катера: $y(x) = \frac{x^2}{2a}$, то есть катер движется по <u>параболе</u>. Из этого

уравнения сразу получаем ответ на первый вопрос: при x = D - a координата точки причаливания $y = \frac{(D-a)^2}{2a}$, то есть эта точка находится на расстоянии

$$L = y + \frac{a}{2} = \frac{(D-a)^2 + a^2}{2a} = 169$$
 м от моста. Далее заметим, что, согласно условию, вдоль оси x

катер движется с постоянной скоростью $v_x = \frac{D}{T}$ (T — время переправы). Поэтому ускорение катера все время направлено по оси y ($a_x \equiv 0$). Кроме того, ясно, что $x(t) = -a + \frac{D}{T}t$, и поэтому $y(t) = \frac{a}{2} - \frac{D}{T}t + \frac{D^2}{aT^2}\frac{t^2}{2}$. Из закона движения видно, что движение по оси y — равноускоренное с ускорением $a_y \equiv \frac{D^2}{aT^2}$. Таким образом, величина ускорения катера постоянна, и поэтому максимальная и минимальная величина ускорения катера относительно берега равны друг другу: $|\vec{a}|_{\max} = |\vec{a}|_{\min} = \frac{D^2}{aT^2} = 0.5 \, \text{m/c}^2$.

ОТВЕТЫ: на расстоянии $L = \frac{(D-a)^2 + a^2}{2a} = 169$ м, максимальная и минимальная величина

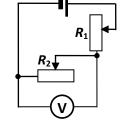
ускорения катера относительно берега равны друг другу: $|\vec{a}|_{\text{max}} = |\vec{a}|_{\text{min}} = \frac{D^2}{aT^2} = 0,5 \,\text{м/c}^2$.

Примечание: На самом деле решение может быть построено и на основании других соображений. Например, можно сразу утверждать, что траектория является параболой, так как заданное в условии свойство траектории является одним из определяющих свойств параболы как кривой, все точки которой находятся на одинаковом расстоянии от некоторой точки (фокуса параболы) и некоторой прямой (директрисы параболы). То, что ускорение постоянно, можно понять из аналогии между движением катера и движением тела, брошенного в отсутствие сопротивления воздуха под углом к горизонту: именно в этом случае движение с постоянной скоростью вдоль оси x и с постоянным ускорением вдоль оси y дают параболическую траекторию.

КРИТЕРИИ ПРОВЕРКИ:

действие	макс.балл	
Обосновано (любым способом), что траектория катера является параболой		
Правильно найдено численное значение расстояния от моста до точки	2+2=4	
причаливания		
Показано, что ускорение направлено по оси у (вдоль реки)	3	
Показано, что величина ускорения постоянна	4	
Сделан вывод, что $ \vec{a} _{\max} = \vec{a} _{\min}$	1	
Правильно найдена численная величина ускорения	4	
ВСЕГО	20	

4. («Косвенные измерения») В схеме, показанной на рисунке, реостаты проградуированы таким образом, что их сопротивления определяются с ошибкой не более 0,1 Ом. Цена деления шкалы вольтметра равна 0,1 В. Показания вольтметра при различных значениях сопротивлений реостатов показаны в таблице ниже. Определите на основании этих данных ЭДС и внутреннее сопротивление источника. Укажите для каждой величины возможную ошибку ее вычисления.



$\downarrow R_1 \backslash R_2 \rightarrow$	24,0 Ом	42,0 Ом
10,0 Ом	23,1 B	26,8 B
18,0 Ом	18,6 B	22,8 B

Возможное решение:

Обозначим искомые величины ${\cal E}$ и r, а величину внутреннего сопротивления вольтметра R_V , и выразим через них величину напряжения для на вольтметре: сила тока в ветви с источником

$$I = \frac{\mathcal{E}}{r + R_1 + R_V R_2 / (R_V + R_2)} = \frac{\mathcal{E}(R_V + R_2)}{(r + R_1)(R_V + R_2) + R_V R_2}$$
, и поэтому нужное нам напряжение

$$U = \frac{R_2 R_V}{R_V + R_2} I = \frac{\mathcal{E} R_V R_2}{(r + R_1)(R_V + R_2) + R_V R_2}$$
. Таким образом, результаты измерений дают нам 4

независимых уравнения, содержащих 3 неизвестных (\mathcal{E} , r и R_V), среди которых – обе искомые величины. Ясно, что есть много разных способов их вычисления, и среди них есть неэквивалентные. Рассмотрим для примера один из них. Можно обратить внимание, что величина, обратная напряжению на вольтметре, является линейной функцией от $\frac{1}{R_2}$:

$$\frac{1}{U}=a+\frac{b}{R_2}$$
, где $a\equiv\frac{1}{\mathcal{E}}+\frac{1}{\mathcal{E}}\frac{r+R_1}{R_V}$ и $b\equiv\frac{r+R_1}{\mathcal{E}}$. Для каждого из значений сопротивления

первого реостата ($R_1' = 10$ Ом и $R_1'' = 18$ Ом) мы знаем два значения функции $\frac{1}{U}$ для двух

значений аргумента $\frac{1}{R_2}$, что позволяет найти коэффициенты зависимости:

$$\begin{cases}
\frac{1}{23,1B} = a' + \frac{b'}{24OM} \\
\frac{1}{26,8B} = a' + \frac{b'}{42OM}
\end{cases} \Rightarrow \begin{cases}
a' = \frac{2725}{92862} \frac{1}{B} \approx 0,029345 \frac{1}{B} \\
b' = \frac{740}{2211} \frac{1}{A} \approx 0,33469 \frac{1}{A}
\end{cases},$$

$$\begin{cases}
\frac{1}{18,6B} = a'' + \frac{b''}{24OM} \\
\frac{1}{22,8B} = a'' + \frac{b''}{42OM}
\end{cases} \Rightarrow \begin{cases}
a'' = \frac{325}{10602} \frac{1}{B} \approx 0,03065 \frac{1}{B} \\
b'' = \frac{980}{1767} \frac{1}{A} \approx 0,55461 \frac{1}{A}
\end{cases}.$$

Теперь заметим, что можно вычислить $\mathcal{E} = \frac{R_1'' - R_1'}{b'' - b'} \approx 36,377\,\mathrm{B}$. С какой точностью определена эта величина? Отметим, что данные задачи даны с довольно высокой точностью: ошибка в определении сопротивлений не превосходит 1% (для большинства значений — несколько десятых долей процента), а ошибка измерения напряжений не более $\frac{0,05}{18,6} \approx 0,3\%$. Однако в процессе вычислений мы использовали вычитание величин, известных нам приближенно, а при

таком действии относительная ошибка может увеличиваться. Например, при нахождении b' было произведено вычитание $\frac{1}{23.1 \text{B}} - \frac{1}{26.8 \text{B}} \approx 0,00598 \frac{1}{\text{B}}$. Если посмотреть максимально

возможную
$$\frac{1}{(23.1-0.05)\,\mathrm{B}} - \frac{1}{(26.8+0.05)\,\mathrm{B}} \approx 0.00614\frac{1}{\mathrm{B}}$$
 и минимально возможную

 $\frac{1}{(23,\!1+0,\!05)\,\mathrm{B}} - \frac{1}{(26,\!8-0,\!05)\,\mathrm{B}} \approx 0,\!00581\frac{1}{\mathrm{B}}$ величину этой разности, то мы обнаружим, что

крайние значения отклоняются от среднего не на 0,2% (ошибка в определении этих напряжений), а на 2,8%! Поэтому ошибка в определении величины ЭДС может достигать 1В. Таким образом, в нашем способе $\mathcal{E} \approx (36,4\pm1,0)\,\mathrm{B}$. Далее выражаем $r=b'\mathcal{E}-R_1''\approx 2,175\,\mathrm{Om}$ и аналогично $r=b''\mathcal{E}-R_1''\approx 2,175\,\mathrm{Om}$. Как видно, результат достаточно стабилен, и ошибка в

вычислении внутреннего сопротивления определяется ошибками определения входящих в это выражение величин и тем, что в этой формуле производится вычитание близких величин. Анализ интервальным методом показывает, что ошибка может достигать 0,7 Ом. Таким образом, $r \approx (2.2 \pm 0.7)$ Ом.

ОТВЕТЫ: $\mathcal{E} \approx (36.4 \pm 1.0) \,\mathrm{B}, \ r \approx (2.2 \pm 0.7) \,\mathrm{Om}.$

Примечание: С точки зрения более строгого подхода, оценки погрешностей, производимые «интервальным» методом, являются несколько завышенными – на самом деле в рамках данного метода $\mathcal{E} \approx (36.4 \pm 0.7)$ В и $r \approx (2.2 \pm 0.4)$ Ом, но для «школьных» решений такая оценка считается приемлемой. Кроме того, как было отмечено, результат не вполне однозначен из-за «избыточности» системы уравнений. Следует также обратить внимание, что «пошаговые» вычисления с «грубыми» округлениями промежуточных результатов из-за упомянутого увеличения относительной ошибки при вычитаниях близких величин могут привести к численному ответу с очень низкой точностью, даже при использовании правильных формул. Поэтому (см. критерии проверки) допустимы ответы, несколько отличающиеся от полученных в предложенном решении. При этом решения с большими отклонениями считаются следствием неаккуратного анализа системы уравнений, и поэтому соответствующие ответы не засчитывались (на самом деле при аккуратном анализе все разумные способы дают, например, для ЭДС значение от 35 В до 37 В). Отметим, что, получив некоторое приближенное решение, можно провести «корректировку» полученных значений, подставляя их в исходную систему и слегка изменяя для лучшего согласия (в этом случае, конечно, необходимо найти и третью неизвестную – внутреннее сопротивление вольтметра; например, в нашем методе $R_{\rm V} \approx (180 \pm 50) \, {\rm Om})$. Такая корректировка позволяет увеличить точность результатов, но значительно увеличивает объем вычислений. Также можно обратить внимание, что использование в формуле значений $\mathcal{E} = 36\,\mathrm{B}, r = 2\,\mathrm{Om}$ и $R_V = 200\,\mathrm{Om}$ позволяет (при округлении до соответствующего разряда) «воспроизвести» приведенные в таблице результаты без отклонений.

КРИТЕРИИ ПРОВЕРКИ:

действие	макс.балл
Получена правильная формула для измеряемого напряжения через параметры	5
схемы	
Используется корректный метод, позволяющий выразить \mathcal{E} и r из данных	4
измерений (записана полная система уравнений и искомые величины выражаются	
из нее)	
Получено значение ЭДС в интервале от 34,5 В до 37,5 В	4*
Указана ошибка в определении ЭДС в интервале от 0,4 В до 2 В и значение 36 В	
находится внутри полученного диапазона	
Получено значение внутреннего сопротивления источника в интервале от 1 Ом до	4*
3 Ом	
Указана ошибка в определении r в интервале от 0,3 Ом до 1 Ом и значение 2 Ом	4*
находится внутри полученного диапазона	
ВСЕГО	25

^{*}за эти пункты частичные баллы не ставятся! Если в работе использовался метод «корректировки» результатов, то ошибки могут быть немного меньше – до 0,2 В и 0,2 Ом, но тогда ответы должны находиться в интервале от 35,8 В до 36,2 В и от 1,8 Ом до 2,2 Ом соответственно – в этом случае за задачу ставится полный балл.